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MflItIZING TKE RNFLECTION OF eLZ TPR0AGNM IC WAVES BY SURFACE IMPDANCE

T. J. ridges ', G. Chen2
,** and G. Crosta

3 ,* * *

1. INTODONTION

I.1. Problem statement

We consider an optimization problem related to the reflection of electromagnetic

waves. A point source of monochromatic waves, characterized by a dipole vector, is

located in an empty halfspace and illuminates an unbounded plane surface, having constant

surface impedance. If the latter satisfies some properties to be defined below, the

incoming wave energy is partly absorbed and partly reflected. By means of the geometrical

optics approximation the reflected fields are evaluated. Since they are functions of

position as well as other parameters, we state the following problems: b

a) given an observation point in the halfspace, which need not coincide with the

source, determine e.g. how the e.u. energy density, or the real part of the

modulus of the Poynting vector at that point, depend on the surface impedance as 'p

its real and imaginary part are varied (direct problem)i
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b) given an observation point as above, find the value of the surface impedance

within a prescribed set which minimizes either of the above mentioned field

functions (minimization problem)l

c) after finding the optimal impedance value as of problem b), determine how either

of the above field functions depends on position as the observation point is

moved (position sensitivity problem).

Problem a) consists of making the reflecting plane almost "invisible" to a particular

observer. This study is our first approach towards the widely publicized "stealth"

problem, which aims at minimizing the radar cross section of some obstacles. The model we

adopt is simplified, however, with respect to any practical situation: nevertheless we

believe our methods and results are helpful in outlining some features of the general

problem.

In the following we Introduce the background material. In Section 11 we calculate

the first two terms in the geometrical optics expansion of the reflected magnetic and

electric fields. In Section III we state the optimization problems for some objective

functions, which depend on the complex surface impedance through the reflected fields.

Mnimization of said functions is carried out by a steepest descent method, incorporated

into a recently developed computer code. Several results are shown and discussed.

1.2. The impedance boundary condition

Let 0 be a halfapacel Z - (x1 ,x21 x3), where x3 > d, denotes a point in D and

3D the x3 - d plane. Then 15 will stand for D U 3D. The electromagnetic fields

(8,N) considered herewith are complex quantities having a suppressed time dependence

exp(-iwt). Both U and U satisfy homogeneous Maxwell's equations everywhere in 0,

except at xs, where the source of a monochromatic spherical wave is located (see Section

1.5). We assume that the x3 - d plane is an imperfect conductor. In order to account

for the nonzero resistance of the latter and for the related inductive effects, the

following impedance boundary condition is specified:

-2-
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-m KX ,(U x n x ), at 30 (1.1)

where a is the outward unit normal vector and Z is a complex valued 3 x 3 matrix,

named the surface impedance. In the most general case its entries may depend on z c 3D.

It can be shown (Jones [11, pp. 511 ff) that, if:

S+Z > 0 , (1.2)

where I* is the hermitian conjugate of Z, i.e. if Z + 5* is positive definite, then

(1.1) plus some adequate radiation conditions are sufficient for Maxwell's equations to

have a unique solution in D.

If X is replaced by the complex scalar z :P p + iT, (1.2) becomes:

0 Re Z > 0 (1.3).4,

which is easily seen to yield a power dissipative boundary condition.

Before considering our problems in detail, we must comment on (1.1). It can e.g. be

obtained under the hypothesis that fields penetrating from the surface into the material

fall off as (Collin [2], pp. 16-17) e.g.:

a(z) - 3(x,,x2,d) expl-(d - x3 )/6.11 x3 ( d (1.4)

where 6., the "skin depth", is related to conductivity a, angular frequency w and

vacuum magnetic permeability P0  by:

8 :. /2/w-jj 0o (1.5)

If the material is isotropic, it can be shown that the corresponding surface impedance

reads:

a - (1 + i)/a s . (1.6)

Moreover, for (1.5) to hold it is required that:

< <  2w(1.7)

0 0

(1.6) and (1.7) respectively shall be used as a physical realizability constraint in

the minimization problem and as an "a posteriori" inequality for the validity range of our

model.

%%
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1.3. The geometrical optics solution method

According to geometrical optics and diffraction theory (Luneburg [3], Keller [4],

Klein and Kay (5]) the asymptotic solution to a diffraction problem may be expressed an

the sum of the incident and the scattered fields:

(3,,) - (-,3I,) + (usgS) , (1.8)

where the scattered field (S,1 S) is further decomposed into the sum of the reflected

and diffracted fields:

(36,3C) = (R, ) + (1p,36) . (1.9) .

All three fields satisfy Maxwell's equations. In our analysis we assume that there is no

diffraction, i.e. (3D,3D) - (0,0). We then postulate that the reflected field has a

uniformly valid asymptotic expansion of the form:
PI.

1(*),e(x)) - eikS(x) , (n)()(n)(x)) , (110)
n 0 (ik)n

I/(eo. 0) /2. "'
where k:= w/c and c :-We 0 i0 /2. (1P, R) is an outgoing wave satisfying the

homogeneous Maxwell's equations and radiation conditions.

It is easily shown that S(.), if(n ) , Ein ) satisfy respectively

IVSI2 _ 1 (eikonal equation) (1.11)

and, along a ray: -.

2dg(n) + (V2s),(n) - -V2,(n-1) (1.12)

2d g(n) + (V2S)l(n) - -V22(n- l ), (1.13)

with R(-
'
) 0 0, 9(1) " 0, where:

dyf(z(Y)) - VS(z) * Vf(x(y)) (1.14)

is the differentiation along a ray.

The boundary condition (1.1) becomes:

RR - Z(; RR X3) - I mx - Z(; x x 1) at aD (.5

in some special cases, e.g. with TE and TM waves, Maxwell's equations reduce to 6

scalar wave equations with uncoupled impedance BCs (Senior [61). This was the case with

-4-
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an earlier work of our* (Chen a Sridge [71). where we considered a problem for acoustic

waves. For the present problem, no such reduction is possible, hence the calculations

will be more complicated.
S..

1.4. A preliminary exaimlet a plane wave incident on an impedance plane

To illustrate the basic role of an impedance boundary condition, the following simple

example is considered. An -polarized wave 31 s- (00,113) is incident on the (xlx 3 )-

plane, where:

o -k(xcoM+x 2sira)
x - , (a j 0) • (1.16)

X a
I 

I,.

13I

$.Figure 1. h plane wave incident on an impedance plane. "1o

The x2 - 0 plane is assumed to have the following boundary impedances[ 0
[0 z , 2m 3> 0 (1.17)
0 0 s

A straightforward calculation based on Sections 1.1 and 1.2 gives the following exact

solution for the reflected fields

4. '

0; R v0 w zsn k 1o~2"

E1x) st2() -O 3(x) - # (1.16) 61U 2 ks sits

.1,01 .1.

I%

J%
~~~~~~~~~~. . -. . .'. ' .. . -. ". .. . . . . . .... .... -.

,.o... .... . ..
'. .' ' " " " "' , " . ... " . " .
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k sine 0 - k i sim -ik(xlcosG-x 2 sni)
MR Wx - - ,bSU0w Pow + kz sinem

MR (x) .. k co . " kz ,im -ik(xlcos-x 2 ,ira)

0 oUe + kz ,i1.

3(x) - 0 .

From the last expressions, the special value:

z - u 0 c/(sina) (1.20)

0 implies that the reflected fields vanish everywhere in R. This example helps us to

point out some facts, which hold in a more general context: (a) the optimal impedance,

,* which minimizes the reflected field depends upon the angle of incidence of the incoming

wave and (generally) on its frequency, (b) if we lat a - w/2 in (1.20), we obtain

- (u 0 /e 0 ) 1/2, which does not comply with (1.6), and (c) if we assume

Re z = ( 0/e0)1/2 :- z0  (the "free space" impedance, z0 Z 366.9 Ohm), from (1.5) we

get a = ew/2 and 6,/A - 1/1, i.e. the wavelength and the penetration depth are

comparable, contrary to the constraint (1.7).

I.5. A spherical electromagnetic wave impinging on an impedance plane

Let an electric dipole antenna with moment p - (p, 2 ,p 3 ) be located at the source

point Xt - (0,0,2d), d > 0. An impedance plane is located at x3 - d. The reference %

frame and the field layout are shown in Figure 2. On the x3 - d plane the impedance

boundary condition:

-m x X - z(m x a x ) (1.22)

subject to (1.3) is satisfied. This is the example we shall consider with greater

detail. In order to solve any of the minimization problems listed in Section 1.1, we need

the reflected fields at the observation xint xR c D. These fields will be evaluated as

explained in Section 1.3.

-6-
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"'7PedanCe Plane

-. J

Figure 2. Tyspedance plan* illuminated by a spherical wave. x, r sine co'u

x2 - r sinO sings x3 -r cow0 1 boundary condition at the (x 3 -d)

planes .x a n * )

So .

-7-
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11. GEOMETRICAL OPTICS APPROXIMATIONS

II.1. The potential and the incident fields

The vector potential A is defined by:

V x A- U0 ,

(2.1)
7 , A - iwueOf (Lorentz gauge condition)

where the scalar potential * satisfies:

Vo - -3 + iWA . (2.2)

Then A and * satisfy a Helmholtz equation. In particular &I, associated to

(3I,3I), satisfies:

f v 2&I + k2&I _ _418 p(z - x8)'.' (2.3)

1 radiation conditions • (23

The solution to (2.3) (fundamental solution or free space Green's function) reads:

&I - Pikr* /r* , (2.4)

where r -lxi - ii 8l 1 2 2d)21 /  and p - -i p/4m . we are thus

modelling a dipole antenna emitting spherical waves. The associated incident fields at

any point x c D, x K5 , are:

) . A p)(e8kr*/0r*)(1 - I/ikr*) (2.5)

* 31 w ieow)v x 3 (2.6)

where x (Z - x/ 1x - xal - ;*/r*. (See e.g. Jackson, [9], 19.2).

a..

11.2. The boundary condition

Since the reflected wave is also spherical, then by Snell's law it diverges from a

virtual point source, which, as Figure 2 shows, is located at the origin. Two geometries,

spherical and planar, are involved in the boundary condition. Since a - (0,0,-I),

(1.15) and (1.22) yield two scalar equations:

f e zU- 10 -- zffl + all :bi
le (2.7)

24 - -zRH,-u 81 b2

which are not sufficient to find (el, HR). They must be completed by an independent

-
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g

scalar equation, i.e.

V * ER 0 (2.9)

Since b1 and b2 in (2.7) are known functions, obtained from (2.5) and (2.6), and since

can be, written in terms of le, (2.7) becomest

ikzhI + sO (S) h1 - 31h3 ) -
b
,

a t x3 d, Vxlx 2  (2.9)

ikzh 2 - 0 (32h3 - 3 h2 ) - b2 , .

where:

denotes the partial derivative w.r. to xi, i 1,2,3 .-

hi denotes the reflected magnetic field components;

to has been defined in Section 1.4.

11.3. Geometrical optics expansion

Expansion (1.10) for the reflected magnetic fiel, becomes:

h1 2 ik aikr (ik)n v , r > d , (2.10)
-h3. w= n."

since S(z) - r, the coordinate along a ray being r. For convenience we have factored %

ik out of the sum. By (2.10) a system of partial differential equations (2.8, 2.9) is

transformed into an algebraic system, which is solved by the identity principle. The 4

expressions of b I and h2 are polynomials containing powers of (ik). Then the sets of

equations for (.nvnwn) will be obtained by equating the coefficients of given powers

of (ik). Lot us begin with n - 0: by introducing polar coordinates (see caption of

Fiqure 2 for the notations) the following system is obtained:

(z0cosS + s)u 0 - z0sin~cosyw0 - b0 1  -

(10cos
8 

+ z)v 0 - u0sinesinev0 - b0 2, x3 - d, Vx1,x 2  (2.11)

sinecosqu0 + sinesinqv 0 + cosew 0 - 0

where-

A O- ""°f. -Cr *



b01 t= (11orpllzocos - z)(P 3sinesini + P2cose) + zoSin2ecosq(P 2coeV - plsin) )I

b0 2 s- (1/porp)(z - z0coSe)(P 3sinecosq + p1cose) + zosin28sinr(P 2comV - PlSirw)l

rp :" (X2 + X2 + d
2 )1/ 2 _ d/cose

From (211) we got the Oth order component of the reflected magnetic field at x3 - d,

Vx11x2: 
*

uo - (UQ - SPX)/ 0rpV1 v0 = -(UR + TPX)/u 0r0Vl w0 = YP sin/ai0rp  (2.12)

where:

P : plsing - P2coS" Q : P3sinesin, + P2cose r

R :- p3sinecosq + plcos8 S : z0sin
28cos

T : z0 sin
2 0sinp U : z0cose - z

V :- z0cos8 + z X : 2z cosO/(z0 + z cosO)

Y : (z0 - z cose)/(z0 + z cose) . (2.13)

The result stated by (2.12) can be extended Vx 3 ) d by integrating the transport

equation (1.13). This is a straightforward step for n - 0 only, since then the right-

hand-side in 0. The required field components are obtained by replacing rp by r in

(2.12), where r :- 2 2' x+ 2 d.
(x 2  x3 , 3)od

The 0th-order reflected electric field components are derived from (2.12) and the

counterpart of (2.6), by applying the identity principle. In analogy with (2.10) they are

denoted by (&10n 0 , 0 ) and read:

a- z0 (v0cos8 - w0sinesin1)

0 -z0 (u0cos8 - w0 sin~coeq), Yi c D (2.14)

.ZsinB(u0sir - v0 cos)

In order to obtain higher order components, we may follow the already mentioned

procedure of applying the identity principle to the algebraic system and solving the

corresponding transport equations. This leads to very complex calculations. An

alternative approach is suggested by the symmetry properties of the generalized spherical

waves appearing in (2.10). By applying a result due to Keller, Lewis, Seckler [91, it can

be easily shown that

r%
-10-
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VI - (1/2r)B V0  (2.1S)

where the Beltrami operator B(-) is defined by:

9( ) - (Sin)l(aesineae(.) + (I/sine)3 2 (.)) . (2.16)

In our case it can be shown that none of the quantities dealt with are singular at 9 = 0.

The action of B(*) on the components given by (2.12) yields:

BUD- eeuo - {Z 0Q + ?(S'eX 32 NX)]cos8 - 2X(S;P9 , + S"P) + UQ}

S(1/0rV) + z0 (UQ - SPX)/u 0rV
2 

, (2.17)

w 32w, + + Ye)cose - Y sin2]/UOr (2.18)

where the subscripts 8 and 9 denote the partial derivative with respect to said

variables, the prime (') denotes division by sine and the double prime (") division by

sin2 e. similarly Bv0  is obtained from (2.17) by orderly replacing (uoQ,S) by

(vO,-R,T) and their partial derivatives.

Finally, the let order components of the reflected electric field are written as

functions of the already calculated 0th and 1st order reflected magnetic field

components and of their partial derivatives with respect to polar coordinates:

aWV

E1 (r,e,q) = (vlcos8 - wisinnsirn + cose - si 8 0
0 r r 38

0i w cose sin W 0 cow aW 0
- -nsn r r e r siW W-)

3 Uo sine 3uo U

n 1 (r'e,) 0 (-ulcose + wlSin8coos - cose a- -+
3r r ae

0
w w0  aw00W _o____os_ sine

+ sinecost 0 + r co- r sin - (2.19)
Yr rU: co30 rn 3Uo P

%1(r,0,9) 50 (ulsin
8sinp - v1sinecos + sinsinq - + r*

%r 0e

+ oes u, 0 o comec 3
0  sin V

r sine a o r W + - - rq-

" .', . o .' .. ' ".". .-*. .. .' .. ' .. .... .. . .,,.. '. .-.. ' .:.-- . . .-.. • - . -. .- .*. -- . .. .' .. " .
, . 
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It may be interesting at this point to make a comparison between the asymptotic

expansion we have chosen and other approximations, known as the paraxial and rresnel's

approximations, also frequently used in electromagnetics. In our case we have started

with the fundamental solution (2.4) and approximated the reflected fields by the Oth

and 1st order terms in the expansion (2.10), which is acceptable whenever kr >> 1. On

the other hand the paraxial and Fresnel's approximations, the equivalence of which has

been discussed by Crosta [10] for a scalar case, apply if the fundamental solution is

known in closed form and affects phase factors appearing in the complex exponential

propagator. Closed form fundamental solutions are easily obtained when boundary

conditions are of the Dirichlet or Neumann type, and yield the well-known Rayleigh-

Sommerfeld propagators. The solution corresponding to impedance SCs for the scalar case

has been given by Malyughinetz [11]. In this paper the implementation of Malyughinetz's

results will not be considered.

-12-
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III. FINDING THE OPTIMAL SURFACE IMPEDANCE VALUE

111.1. Problem statement

Let us assume that the surface impedance can take on values belonging to either of

the following sets:

Zu Is (3.1
ad :' [z e C Ia<p 1 'C e z 4 P21 IzI " bl 31

and

au e z - I, z} (3.2)a~d ""(z C Za~d

hereinafter named "the admissible sets" and denoted by Zad, whenever no ambiguity

arises. Equation (3.1) contains in particular the positivity constraint for PA tj (3.2)

represents the physical realizability constraint, discussed in 11.2.

Let X denote the index function of Zad' which in 0 if z c tad and 48D

elsewherel then we define the objective functions 30 , a - 1,...,4:

J1(Z) i- (c04(x) " %(X) + N01 %(X)) + X zf - w, + x XI (3.3)

J2(z) f iv + xlzl 1- W2 + xlz. (3.4)

"3(" - x" ) 4(Z)12 + x I" I V_ W 3 + xIzI , (3.5)

J4 () 1- f2' ft PA [%(X) x ,R(,)I • edt + xl-I - W4 + x Iz 1 (3.6)

Each of the J's is the sum of a "physical" term, V., and of an "economical" one,

XlSzJ the purpose of the latter will be clarified at the end of this subsection. The

term W1  is the time averaged reflected energy density at x - (r,64,) c 0, while W2

results from integrating W1  over a bounded domain V = 01 W3  is the time averaged

squared modulus of the reflected Poynting vector $R(X); W4  is the flux of Re(R) .5

through a given bounded surface E, s.t. E r D -AD

The Jm's depend on z through the fields.

We now state the minimization problems
a.

find the surface impedance z c Zad, which minimizes one of the Je's. i.e.: %

,,,(;) - . ,,(Z,, , gien. (3.7)
Z15E

-13-
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This problem will be solved by an iterative procedure, which consists of the steps also

shown by Fiqure 3:

1 - set k - O

2 - given zk c ad, determine the reflected fields to the desired order of approximation

(one, in our case),

3 - compute Wk, i.e. J , since zk C ad
m a"

4 - from km and its derivative w.r. to z, 3kz, defined in 4111.2, determine

4~ ~k+1 e+ <a *t kljk,

S - repeat the whole procedure from step n.2 until some stopping condition is met.

In detail, step n.2 requires the solution of a control problem, described by the map:

T : Zad ------ (C' (D))
3 

- (C(D))3 := X (3.8)

where T is a C!(Zad) diffeomorphism and z is the input.

Step n.3 is related to observation of the system, since WV(.) is an observation map

and Wmz) is the output.

Step n.4 consists of updating the input according to the observed quantity; in other

words information is feedback from output to input.

Among the stopping conditions appearing in step n.5 the following are considered:

4 - an upper bound on the number of iterations, k

- a lower bound, Jm(min)' for the objective function

- a lower bound, 1'mz(min)1, for the modulus of the derivative (see 1111.2).
4,°,

Without going into further details, we point out that both analytil and physical

considerations play a role in determining Jm(min)" Let us assume that the minimum

detectable energy in a given V is known: this value may then be assiqned to J2(min).

Prom an analytical viewpoint, 3 m(min) can be related to the modelling error, which

affects all field functions, since (2.10) and its counterpart for the electric field are

replaced by the sum of the first two terms. With reference to W1 , J1(min) is chosen as

the best upper bound of the energy density due to the neglected terms (n) 2 in (2.10)).

d
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We now consider the well-posedness of the minimization problem.

Existence of at least one z is insured by the economical term defined above. Moreover,

z continuously depends on the problem parameters, e.g. the observation point coordinates,

because T of (3.8) is smooth and all of the J Is are continuous functions of z in

Zad.

Uniqueness of z cannot be proved in a straightforward way. Other properties of z

appear when the first order derivatives of Jm's are studied.

111.2. The derivatives of Jm w.r. to z

We notice that all of the Jm's are continuous real valued functions of a complex

quantity, z, where a field vector and its complex conjugate always appear together.
* •.

Since Z(-) depends on z alone and *
•
) depends on z , then it makes sense to

consider both z and z as independent variables.

Let us denote by Rz the derivative of 3 w.r. to z1 then the first variation

of WI (•) reads:

dW1 = - eo("* " 3Zdz + 9* dz*) + 0o(," • Hz + * " dz*)] -

- Re(J 1z)d - Im(J1z)dT , (3.9)

where:

J1z C OR "z + "z " (3.10)

Similar expressions are obtained for the other physical terms; in particular

J3z = (Z x HZ) - S* ( ) , (3.11)

SJ 4z - (Zz x H* + 3* X Hz) * n , (3.12)

where each of the JMz's is a complex quantity, hereinafter called the "gradient" of ,

w.r. to z. The differential properties of J, lead to the following result:

let z C Zad , then Z - 0 is a locus of stationary points of Jm (for any m),

which are either relative maxima or minima.
.5.

The proof is straightforward: from the definitions (3.3) to (3.6) we get

J(z) * J(z), where we have dropped the subscript m for simplicity. For a given P

-16-
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.

away from the boundary of ZdU we have J(3 }i) - J(3l-T )# since J(" ;") is at least of

class CI w.r. to T, then dj(31T) - -dj(0;-P )r in particular W1O) - 0.

Second order analysis is needed in general to tell whether at (;1O)J(;iU) attains a

local maximum or minimum. If we deal e.g. with J, (-)  and consider the analogy between

the reflection of spherical waves and the preliminary example of X1.4, we could easily

show, without performing any computation, that real values of * must yield local minima

of J. This intuitive conclusion is supported by a study of the Sessian matrix of Jj#

denoted by V
2
0.1, and defined by:

V23 1 : j , (3.13)
L 0z*z .7*z -.

where J., stands for the 2nd order derivative of J1 w.r. to z. The 2nd order

variation d20. of J, then reads:

d
2
J1 = (dz dz*)V2j1 ) ) (3.14)

4dz.)

alternatively, it can be expressed in terms of (dp,dT):

d
2
J1 " (d0 dT) jetr * 231 "() (3.15)

1 r
where I t- and Itrs denotes the transpose of V. Let us now define

S tre . V T! ?I then the eigenvalues of N, A, and A2, read:

A -1,2 - Jzz* ; (izz
I  

(3.16)

They are always real. Numerical computation is needed to evaluate them (see III.4 and

111.5.4). At T - 0, VP C Zad they are both strictly positive, hence T - 0 is a locus 41

of relative minima for 1.

111.3. The minimization algorithm

The algorithm introduced in 4111.1 is implemented on the discretized counterpart of

the original minimization problem. The rule which yields zk+1 C Zad at step n.4

... "4"X'.'. .... J"• ...- _ .•..... -" ... •, ,.••.". .... % . . --. -%-
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characterizes the steepest descent method with projection (Giannessi (1211 Pchenitchny a

Daniline [13] and reads:

zk+ 1 _ PZad(Zk _ tk . ( ) (3.17)

where:

Jkz is a function of the fields evaluated at the k-th iteration, according to

(3.10) and the likel

tk  is the updating step, chosen between the following quantities:

tk _ min(Jk/IJ k 2 1 jJk 1  , (3.19)

PZad is the projection operator on Zad, which enforces all constraints implied

either by (3.1) or by (3.2).

To assess the convergence of the {zk }  sequence obtained from (3.17) we may apply a

theorem by Pchenitchny & Daniline ([131, p. 48). Let G C. Zad be a subdomain where the

eigenvalues defined by (3.16) satisfy A2 > A I > 0. We define:

AL : min A(P,T)G "
* (3.19)

AU : max X2 (P,T)
G

then: 1z+1 k 1/2. .L)( +X )k + 1
1, i ( 0 " zI12/(Xu XL)I(xu/L) A / ((X x + X (3.20)

Lk+ Ui L * U AL)/U AL)

On the other hand, if AL 4 0, no general convergence property holds.

111.4. Structure of the computer code

A computer code which implements the theory presented so far has been written in the U.

FORTRAN ASCII language and developed on the Univac 1100/90 owned by CILEA at Segrate

(Milan, Italy).

In order to handle fields and their functions a suitable system of units is chosen,

S.t.

the wavelength, A, is the new unit of length,

-18- ,
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vacuum permittivity co and magnetic permeability i 0  take on unit values,

z values are normalized to the free space impedance z0 :- ( u 0A 0
/ 2 .

Data are suppl~ed by the user in MKSA units, then automatically scaled. The computed

functions of the fields are printed out in MKSA units, z values are not scaled back.

The reference frame can be either centered at the source (S) or at the mirror image (0)

w.r. to the impedance plane. Coordinates can be supplied either in cartesian or polar

form.

The problem types which can be solved are:

- "direct", i.e. computation of the discretized counterpart of J. in a given

(PIT) domain contained in Zady

- "stealth", i.e. computation of z defined by (3.7);

- some utility functions: a) computation of Hessian eigenvalues according to (3.16)

for given observation point and z values; b) computation of the reciprocal

condition number M :- X/ 2 .

In connection with point observation, either J, (see 3.3) or J3 of (3.5) can be

chosen. If 32 (see 3.4) is to be computed, the user must specify the integration

volume. Tp to now the choice is restricted to volumes enclosed between two spherical caps

centered at 0, which are completely defined by 6 parameters, i.e., see Figure 4:

V :- ((r,e,,)jr 1 4 r 4 r2 ; 01 8 -C 82; P1 4 ( C 92 }  (3.21)

A similar constraint holds for the integration surface t, on which J4 of (3.6) is

defined.

As soon as coordinates are read in, it is checked that d, the distance from the

source S to the impedance plane, is larger than 1OOX and that every observation point

lies in D.

If a "direct" problem is set, the corresponding value of Jm is computed for as many

times as required by the user, who enters the upper and lower values of 0 and T and

the number of parts into which both intervals must be divided.
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every minimization step are evaluated numerically from the field component derivatives

w.r. to z, which are obtained from (2.12) to (2.19) and lead to the procedure shown in p

Table I. Second order z derivatives of J1 , which we do not show here for simplicity,

are also needed to evaluate Al,2 of (3.16).

Table 1. The computation of a field component z-derivative as implemented in the code

Define: 
"

I.I

\¢OZ C- % I, .

Consider the 1st component, z:"-

Eoz - r-1]e (-lz wor1)ensin
Iz- (viz" VOz - WOz r

-(Vozosine + wozocosesinvp) - r-1 - (Wo~z,,cos) *r'l
onswhere (see (213))

V0z - IM TPX z  r
"  

"v)l 
V -  I

~ woz" PYz 
r - 1 

"sine

Viz [(,2v -I + D _ -Ci) . + z I (/r2 ) 2V)

" Explicitly :

-11

C -Ueer - 2ReU e + 2UR - PIT X + 2Txe +- XXOT ) + 2r-T"P -S"P 9  +

+ JR, - P(TX + XeT') cose

D - 2Ue[ueR + uN + P(XT6 + XeT)] - (UR + PXT) * (1 + 2U02V - 1 - U'e)'

from which C,D are obtained. i
z

Note- The subscript denotes the partial derivative w.r.t. the corresponding variable;

the prime (') division by sine, the double prime C") division by sin 2.

No quantity is singular at 0 - 0.

4.P
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.4' Computational results are written out, when applicable, as printer graphs or as data

files, which can be further processed by a graphics package, as we shall show in the next

Section.

III.5. Some computational results

Remark: All numerical values are given in MKSA units and all computations have been

* carried out in single precision arithmetics.

III.5.1. Symmetry properties of J1

The following symmetry properties of J1 are easily verified and numerically

checked:

JI(8 = 0; p (1,0,0)) - J1(9 - O; p = (0,1,0)), 'A,d,r, , Vz c Zad , (3.22)

J I (O - 1; i * ; p = (0,1,0)) - J 1 (8 = 1; p - w/2; p - (1,0,0)), VA,d,r, Vz C Zad • (3.23)

Polarization effects are easily evaluated numerically. As expected, if e # 0, the

direction of p affects J1. E.g. for X - 1, d - 100, r - 200, 6 = 1 rad, y - 0,

P - 300 ohm, p - (1,0,0) yields J1  1.11E + 2 J/m
3
, whereas p = (0,1,0) yields-

J 1.35E + 2.

111.5.2. Direct problem solutions

Figure 5 shows that the minimum of J1 at T - 0 shifts to lower values of p as

0 increases from 0 to I rad.

Table II gives the values of z (ohm) which yield the minimum and maximum of J1 in

the specified domain. The uncertainty of the values depends on z - domain

discretization. More accurate figures are obtained by minimizing J1, as discussed in

III.5.3.".

The other objective functions are studied in a similar way. Results are shown by

rigures 6, 7, 8.
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4 Table TI. Some results yielded by the direct problem solver applied to W1

lmir; d 100Om; r =200m; V 0 red.

io0 3 p 4 100; 0 4 T 4 300 ohm

6 Wimin at (P T) Wimax at (p T)

(rad) (Jm 3) (ohm) (ohm) (J/m3) (ohm) (ohm)

0. E-7 36 . 5E 0. 30

1/ < SE - 7 376 ± 9 0.0 .47E - 3 100. 300.

1/2 < 5E - 7 366 ± 9 0.0 .38E - 3 100. 300.

3. /4 < 5E - 7 270 t 9 0.0 .27E - 3 100. 300.

1/ < 5E - 7 204 ± 9 0.0 .16E - 3 100. 300.

The typical CPU tme needed to compute 484 values of J1 or 3 3 is 0.45 s. It

becomes about 30 times longer when J2  or J4  are processed, because the above mentioned

integration routine must be called.

111-5.3. Minimization of the objective functions

Tables III and IV refer to the minimization of J1 . The terms "unconstrained" and

constrained" have been defined in §111.4. We notice that the machine precision limit is

- achieved in the "unconstrained" case, typically after 30 iterations. Given z0 . 100 ohm,

the convergence of {zkl towards Zexact is s.t. Izk - ;eatl(exc) < 104 for

k > 16.

In order to determine z in the "constrained" case (p - T), the example of 41.4 is

again of some help. If we set a - n/2 in (1.18), (1.19) and consider the minimization

of RR- R to which J, of (3.3) is proportional, we get:

0=z0,/i0 (3.24)

* In passing we note that 6 X-1/7r V2 in this case. The z value just given must be

compared to the computed ones in line 1, columns 3 and 5 of Table III and with the whole
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colmn 8 of Table IV. Convergence speed of (z k) is similar te that of the

"unconstrained" case. Values of P for different observation angles cannot be determined

with equal ease.

(J)I

i%

01A0

Figure 6. Time averaged electromagnetic energy in a volume, J 2. X its, d 10l0ots

* 200 ig r 4 201ml 0 -C 8 < 0.5 radi 0 4 0.5 rad: p - (1,0,0) Vag

*100 <p 4 1000 ohm, 0 4 'r 4 1000 ohm; (P T) domain divided into a 22K 22

not. Minimum plotted value 12ain "0.008 J7 at z (360 + iW) ohm.

Maximu plotted value J2max -08 a at z (100 4'1ilOO) ohm'
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J3

(W~.zz -..Z
910

%~K e (hm);m)

Figure 7. Time averaged squared modulus of Poynting vector at a point, 3 )A,d as

above, r - 200., 0 - - 0 (source point), p as abovel (PrT) rang* of

values and donmin discretization as above. Minimum plotted value (3j .633 .

* 22 W2/m' at p - 360 ± 20, T - 0 ohm. Maximum plotted value J -~ .643

* 25 W2/m4 at z - 100 + i1OOO ohm.
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A Table 111. 0inimization of J1 : optimal values of p vs. 6

X.- lm; 4 100m; p - (1,0,0) Vat, 4P 0 rad

Re z :p in units of 7-C

unconstrained: Re z and Im z independent, constrained: Re z - Im z

8 (rad) r -200m r 400m

unconstr. constrained unconstr. constrained

0 1.0000 0.70708 1.0000 0.70708

(source point)

0.25 0.96891 0.68509 0.96891 0.68509

0.50 0.87758 0.62048 0.87758 0.62048

e0.75 0.73169 0.51734 0.73169 0.51731

1.00 0.54030 0.38196 0.54030 0.38199

1.30 n.a. n.a. 0.26750 0.18906

Table TV. minimization of J, at source for different values of d

1 -; r -2dg 8 0, p - (1,0,0) Vs

computed optimal values Pokk are given in units of

unconstrained constrained

a0 - (.265, 0,0) -o (.2653 - 21 0.0)

I 1 Tc last iO P1 T. I last

W J/U3) (n.u.) (n.u.) (Jim it.(k (Jm 3) (n.u.) (j/u3) it.(k)

100 .263 + 3 1.0000 -.29 - 13 .713 - 27 40 .23 + 3 .70708 .343 + 2 13

*200 .663 + 2 1.0000 -. 9 - 13 .29Z - 26 37 .192 + 3 .70708 .343 + 2 13

400 .163 + 2 1.0000 -.39 - 12 .113 - 25 34 .483 + 2 .70708 .843 + 1 15

800 .41F + 1 1.0000 -. 12 - 11 .603 - 25 31 .12 + 2 .70715 .21C + 1 14
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'I ,

The typical CPU time required by a 30 iteration run in 0.25 $. The minimization of

J3 is carried out in a similar way and requires comparable CPU times. Some results are

shown by Table V. Given e.g. z 0 - 1000 ohm, the convergence speed of {zk) is slightly

higher in the "unconstrained" came and lower in the "constrained" one. The values of z

computed by "constrained" minimization of J, and 33 agree to within 3 decimal places

(compare line 1, column 8 of Tables IV and V), which is an accuracy test for the computer

code and its implementation.

32 and 34 are dealt with by the same procedure, although for sake of brevity the

results are not presented.

Table V. Minimization of J3 at source for different values of d

A - Inl r - 2d S = - O0 p - (1,0,0) Vs

computed optimal values pk,Tk are given in units of

unconstrained constrained

z
0 

- (2.6521 0.0) z
0 

- (.265% - 2Y 0.0)

d 130 P I last L9 -r T last

(a) (W/n2) (n.u.) (nu.) (W/S it.(k) (W/n2) (n.u.) it.(k)

100 .493 + 11 1.000 .193 - 7 .293 - 1 20 .233 + 12 .70746 .402 + 11 50

200 .123 + 11 1.000 .163 - 7 .723 - 2 20 .593 + 11 .71075 .103 + 11 30

400 .313 + 10 1.000 .153 - 7 .193 - 2 20 .159 + 11 .71082 .253 + 09 30

800 .773 + 09 1.000 .143 - 7 .458 - 3 20 .363 + 10 .71085 .638 + 09 30

II.5.4. The attraction domain of the minimization algorithm

Although the condition number criterion (3.20) applies wherever AL > 0, the

algorithm is shown to yield a convergent sequence even if the starting value is well

outside the subdomain G of (3.19). Minimization of J1 at source is successful in the

domains

-29-
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j.%-7 iI .r- i -r-7

10- 4 4 pO < 104 ohm

0 4 pO - 10 4 ohm .
(3.25)

This is due to the fast search rule (3.18), which however becomes less effective when

Itk j'l << Izkl. This occurs when jk/lIl >> 1, because the cost function is rather

"flat" at points far away from a minimum.
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